Force related activations in rhythmic sequence production.
نویسندگان
چکیده
Brain imaging studies have implicated the basal ganglia in the scaling of movement velocity. Basal ganglia activation has also been reported for movement timing. We investigated the neural correlates of scaling of force and time in the production of rhythmic motor sequences using functional magnetic resonance imaging (fMRI) of the human brain. Participants (N = 13) were imaged while squeezing a rigid force transducer in a near isometric manner between thumb and index finger, to reproduce four different rhythmic sequences. The responses were separated by either equal (600 ms) or alternating (400, 800 ms) intervals, and produced with either equal (12 N) or alternating (8, 16 N) forces pulses. Intervals and force levels were balanced across each condition. The primary motor cortex (M1), supplementary motor area (SMA), basal ganglia, thalamus, and cerebellum were activated during the production of sequences marked by equal interval and force. There was no reliable main effect of alternating interval. In contrast, greater activation of these regions was associated with the extra demands of responding with alternating force pulses. We interpret the data as identifying a significant role of the BG in the control of force. In addition, the results indicate the importance of monitoring force when studying brain activation associated with motor timing.
منابع مشابه
Harmonic-percussive Sound Separation Using Rhythmic Information from Non-negative Matrix Factorization in Single-channel Music Recordings
This paper proposes a novel method for separating harmonic and percussive sounds in single-channel music recordings. Standard non-negative matrix factorization (NMF) is used to obtain the activations of the most representative patterns active in the mixture. The basic idea is to classify automatically those activations that exhibit rhythmic and non-rhythmic patterns. We assume that percussive s...
متن کاملTiming functions of the supplementary motor area: an event-related fMRI study.
Two previous studies in which we recorded slow brain potential shifts over the scalp revealed performance-dependent effects that sustained one prominent model of timing mechanisms. These effects seemed to be derived from the supplementary motor area (SMA). Event-related functional magnetic resonance imagery (fMRI) was used to check this hypothesis. Brain activations were contrasted in Time prod...
متن کاملEffector-independent voluntary timing: behavioural and neuroimaging evidence.
We investigated effector-independent aspects of voluntary motor timing, using behavioural measurements and functional magnetic resonance imaging. Two types of temporal pattern were investigated; one isochronous, the other a metric, rhythmic sequence of six temporal intervals. Each pattern was performed using tapping movements with the left or right index fingers, or rhythmic speech on one sylla...
متن کاملO23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines
The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...
متن کاملHomayoun as a Persian Music Scale on Non-Musician’s Brain: an fMRI Study
Introduction: The aim of this study was to get to a neurological evaluation of one of the Persian music scales, Homayoun, on brain activation of non-musician subjects. We selected this scale because Homayoun is one of the main scales in Persian classical music which is similar to minor mode in western scales. Methods: This study was performed on 19 right handed subjects, Aging 22-31. Here some ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 27 4 شماره
صفحات -
تاریخ انتشار 2005